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ABSTRACT
Identifying and extracting parts of a system’s implementation for

reuse is an important task for re-engineering system variants into

Software Product Lines (SPLs). An SPL is an approach that enables

systematic reuse of existing assets across related product variants.

The re-engineering process to adopt an SPL from a set of individual

variants starts with the location of features and their implementa-

tion, to be extracted and migrated into an SPL and reused in new

variants. Therefore, feature location is of fundamental importance

to the success in the adoption of SPLs. Despite its importance, ex-

isting feature location techniques struggle with huge, complex, and

numerous system artifacts. This is the scenario of ArgoUML-SPL,

which stands out as the most used case study for the validation

of feature location approaches. In this paper we use an automated

feature location technique and apply it to the ArgoUML feature

location challenge posed.
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1 INTRODUCTION
To conduct software maintenance or evolution, feature location is

one of the key steps [17]. The goal of feature location is to establish

mappings/traces between features and their respective implementa-

tion. Feature location allows practitioners to find and reason about

the parts of a system that will be affected by modifications [6].
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Many feature location techniques can be found in literature [17]. In

addition, an increasing interest and proliferation of techniques are

observed in the field of re-engineering variants, developed using

ad hoc reuse, into Software Product Lines (SPLs) [2, 3]. To evaluate

these techniques, ArgoUML-SPL is one of the most used subject

system, as shown in the ESPLA catalog [13].

Martinez et al. propose a challenge case study based on

ArgoUML-SPL at the Systems and Software Product Line Confer-

ence (SPLC) [14]. This challenge defines the ArgoUML-SPL bench-

mark that is comprised of eight optional features and 15 predefined

scenarios ranging from a single variant to 256 variants. The bench-

mark provides a set of tools and artifacts, including a ground truth

to allow techniques to be evaluated and compared to each other. The

main challenging characteristics of ArgoUML-SPL are: (i) it is a real

software system of considerable size that resulted from a develop-

ment process involving several developers; (ii) the implementation

is composed of feature interactions and feature negations; (iii) the

granularity of the implementation that must be traced varies from

complete Java classes to statements inside methods.

Taking into account the challenges aforementioned, this work

applies our feature location technique implemented in the ECCO

tool [7, 11, 12] to the ArgoUML-SPL challenge [14] and presents

and discusses the results. The contributions of this study are: (i)

implementation of a Java adapter that extracts data from the Java

source code files at the granularity asked for by the challenge

(classes, methods and their respective refinements); (ii) application

of ECCO to a real-world subject where we can show how well

our approach deals with these system variants; (iii) providing and

discussing results for the ArgoUML challenge case study so that

others can compare their results to ours.

The remainder of this paper is structured as follows: Section 2

discusses related work. Section 3 briefly describes the challenge

dataset. Section 4 describes our feature location technique and the

methodology used to apply it to the posed challenge. Section 5

presents the results and offers a discussion with particularly inter-

esting insights. Finally, Section 6 concludes.

2 RELATEDWORK
Feature location is the first step in the process of re-engineering vari-

ants into SPLs [2]. To ease the migration of software variants into

an SPL, some feature location techniques can automate the location

of source code elements relevant to a given feature. ArgoUML-SPL

is the subject system most used in this context [13].

Rubin and Chechik [17] describe the most common feature lo-

cation techniques and categorize them by the strategies they use:
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static program analysis, which leverages static dependencies be-

tween program elements; information retrieval techniques, based

on information embedded in program identifier names and com-

ments; and dynamic approaches that collect precise information

about the program execution. In addition, hybrid approaches com-

bine different techniques to take advantage of each approach.

Cruz et al. [5] provide a literature review and use ArgoUML-SPL

to evaluate three information retrieval based feature location tech-

niques. These strategies were compared based on their ability to

correctly identify the source code of several features from the

ArgoUML-SPL ground truth. The results suggest that Latent Se-

mantic Indexing is better than both Paragraph Vectors and Latent

Dirichlet Allocation. However, the values obtained for precision,

recall and F1 measure were not satisfactory, and strategies to better

deal with huge and complex artifacts are needed.

There are several comparison-based feature identification

(e.g. [22]) or feature location (e.g. [1, 18, 21, 23]) techniques. Most

of them rely on formal concept analysis (e.g. [1, 18, 21]). Many

of them are hybrid approaches based on a combination of formal

concept analysis and information retrieval techniques (e.g. [18, 21])

of which our approach uses neither. Most only consider single

features and not their negations or interactions (i.e. conjunctions

or disjunctions), can only be applied to specific types of imple-

mentation artifacts (e.g. source code), or only operate on a coarse

level of implementation artifacts (e.g. class or method level and not

statement level). Our approach has none of these restrictions.

Martinez et al. built the tool BUT4Reuse [15, 16]. BUT4Reuse

supports extractive SPL adoption by providing a framework and

techniques for feature identification, feature location, mining fea-

ture constraints, extraction of reusable assets, feature model syn-

thesis and visualizations, etc. This tool is designed to be generic and

extensible, allowing researchers to include their own strategies. To

this end, they also employ an adapter concept in order to support

variability in different types of implementation artifacts.

3 DATA SET
TheArgoUML-SPL challenge [14] provides 15 scenarios and a ground
truth consisting of 24 traces. ArgoUML is an open source tool for

UML modeling that is implemented in Java and was refactored into

a product line [4]. It consists of two mandatory features: Diagrams

Core, and Class Diagram; and eight optional features: State Diagram,

Activity Diagram, Use Case Diagram, Collaboration Diagram, De-

ployment Diagram, Sequence Diagram, Cognitive Support, and

Logging.

3.1 Scenarios
The challenge provides 15 scenarios (see Table 1) with varying

number of variants. In our context, a variant is defined as follows:

Definition. A variantV is a pair (F ,A) that maps a set of features
F that the variant provides to a set of implementation artifacts A that
implement the variant.

More specifically, Original scenario contains only the initial

ArgoUML system as a single variant from which the ArgoUML-SPL

was initially created [4]. Traditional scenario has 10 variants, one
with all the features, one with only the mandatory features, and for

every optional feature one variant with only that feature disabled.

Table 1: ArgoUML Challenge Scenarios

Scenario Size Description
Original 1 Original ArgoUML variant containing all features.

Traditional 10 Variants with no, all, and combinations of 7 optional features.

PairWise 9 Set of variants that covers all pairwise feature combinations.

2-10 Random 2-10 Randomly selected subsets of variants.

50 Random 50 Randomly selected subset of variants.

100 Random 100 Randomly selected subset of variants.

All 256 All possible variants of ArgoUML-SPL.

PairWise scenario is composed of 9 variants obtained using the pair-

wise feature coverage algorithm from FeatureIDE [20]. Random
scenarios of different size (2, 3, 4, 5, 6, 7, 8, 9, 10, 50 and 100 variants)

with randomly selected variants. All scenario has all the 2
8 = 256

possible variants of ArgoUML-SPL obtained from FeatureIDE [20].

3.2 Ground Truth
The ground truth provided by the challenge consists of 24 traces.

Definition. A trace T is a pair (F ,A) that maps a propositional
logic formula F whose literals are features to a set of implementation
artifacts A.

In the context of this particular challenge, implementation arti-

facts represent Java code elements. In other words, every trace T
maps a set of code elements T .A to a feature condition T .F .

The ground truth contains one trace for each of the eight indi-

vidual features; Two traces with a single negative feature; 13 traces

with a conjunction of two features; One trace with a conjunction

of three features.

4 FEATURE LOCATION TECHNIQUE
We applied an automatic feature location technique that is based

on the comparison of features and implementation artifacts of a

set of variants [7, 10–12]. The approach was first presented at

SPLC’13 [10] and has since evolved beyond the task of feature lo-

cation (i.e. trace computation) to also support, for example, the

composition of variants from the computed traces [9, 12]. It is now

implemented in a publicly available tool called ECCO
1,2

[7, 12].

ECCO supports trace extraction (commit operation) and variant

composition (checkout operation) with arbitrary types of implemen-

tation artifacts beyond just source code. To this end, it requires an

adapter for every type of artifact that contains variability. To apply

it to the posed challenge we developed a simple Java adapter to

parse the code using JavaParser
3,4

[19].

Figure 1 shows the feature location process of ECCO. The entire

implementation of a variant (in this case a set of Java files) is in-

put to the responsible adapter (in this case the Java adapter). The

adapter creates an artifact tree structure as illustrated in Figure 2.

The commit operation uses the artifact tree structure and the set of

features of the variant to compute traces from features to nodes in

the artifact tree, which are finally stored in a repository. This pro-

cess can be repeated incrementally with arbitrarily many variants.

Every time a new variant is committed the traces in the repository

1
https://jku-isse.github.io/ecco/

2
https://github.com/jku-isse/ecco/

3
https://javaparser.org/

4
https://github.com/javaparser
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are refined. One could, for example, decide to stop committing fur-

ther variants when the traces in the repository have not changed

anymore over the last few commits. Finally, the traces stored in

the repository are exported into the format requested by the chal-

lenge and compared to the ground truth traces (see Section 3.2) to

compute the challenge metrics (see Section 5.2).

ECCO
Variant

Initial Products
Initial Products.java

Java 
Adapter

Commit Repository

Figure 1: ECCO process for committing a single variant con-
sisting of multiple Java files into its repository.

Figure 2 illustrates the structure of the artifact tree created from

Java files by the Java adapter. It reflects the requirements of the

challenge that asks to trace classes, methods and their respective

refinements in the form of changes to imports, fields and lines of

code. Therefore, we store classes (including nested classes), imports,

fields and methods explicitly. For fields and methods we also store

their children (to be able to detect refinements) in the form of raw

lines of code as they can span over multiple lines. This is necessary

as variability in ArgoUML-SPL is often implemented at such a fine-

granular level and annotations are not always placed in a disciplined

manner [8]. Even single statements, e.g. field declarations, can span

multiple lines of which only some might be annotated with features.

Class

Imports Methods Nested
Class

Raw
Lines

...

Fields

Raw
Lines

Figure 2: Artifact tree structure created by the Java adapter.

The commit operation is essentially based on five rules [11].

Assume two variants A and B:

(1) Common artifacts (in A and B) likely trace to common fea-

tures (in A and B).

(2) Artifacts in A and not B likely trace to features in A and not

B, and vice versa.

(3) Artifacts in A and not B do not trace to features in B and not

A, and vice versa.

(4) Artifacts in A and not B at most trace to features in A, and

vice versa.

(5) Artifacts in A and B at most trace to features in A or B.

The first two rules quickly isolate features (or feature combinations)

to which implementation artifacts likely trace. Rule 3 determines

features to which implementation artifacts certainly cannot trace.

The last two rules provide an upper bound on where features can

at most trace. For more details please consult [11].

5 RESULTS
This section presents and discusses the results of our feature lo-

cation technique ECCO being applied to each of the 15 scenarios.

The results and instructions for reproducing them are publicly

available
5
.

5.1 Time Performance
Figure 3 shows a box plot of the runtime per variant (i.e. commit
operation) per scenario, ordered by increasing number of variants.

It was measured on an HP ZBook 14 laptop, with Intel® Core™ i7-

4600U processor (2.1GHz, 2 cores), 16GB of RAM and SSD storage,

running Fedora Linux as operating system. Each scenario’s average

runtime per committed variant is between 4 and 7 seconds. Overall,

the runtime remains quite constant. Fluctuations are most likely

caused by differences in the size of variants.

O
r
i
g
i
n
a
l

0
0
2
R
a
n
d
o
m

0
0
3
R
a
n
d
o
m

0
0
4
R
a
n
d
o
m

0
0
5
R
a
n
d
o
m

0
0
6
R
a
n
d
o
m

0
0
7
R
a
n
d
o
m

0
0
8
R
a
n
d
o
m

0
0
9
R
a
n
d
o
m

P
a
i
r
W
i
s
e

0
1
0
R
a
n
d
o
m

T
r
a
d
i
t
i
o
n
a
l

0
5
0
R
a
n
d
o
m

1
0
0
R
a
n
d
o
m

A
l
l

0

1

2

3

4

5

6

7

8

9

10

Scenario

T
i
m
e
[
S
e
c
o
n
d
s
]

Figure 3: Runtime per Variant per Scenario

5.2 Precision, Recall, F1 Score
To validate the computed traces, three metrics are computed for
each trace T . They are calculated automatically by the challenge

benchmark [14], which compares every ground truth trace Tдt
with the respective (i.e. same feature condition T .F ) trace Tecco
computed by our feature location technique.

Precision is the percentage of correctly retrieved artifacts (i.e.

code elements) relative to the total retrieved code elements.

precision =
TP

TP + FP
=

|Tдt .A ∩Tecco .A|

|Tecco .A|
(1)

where TP (true positives) are the correctly retrieved code elements

and FP (false positives) are the incorrectly retrieved code elements.

Recall is the percentage of correctly retrieved code elements

relative to the total number of code elements in the ground truth.

recall =
TP

TP + FN
=

|Tдt .A ∩Tecco .A|

|Tдt .A|
(2)

where FN (false negatives) are code elements present in the ground

truth which are not included in the retrieved code elements.

5
https://github.com/jku-isse/SPLC2019-Challenge-ArgoUML-FeatureLocation
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The F1 score (F-measure) relates precision and recall and com-

bines them into a single measure.

F1 = 2 ∗
precision * recall

precision + recall

(3)

Figure 4 shows average precision, recall and F1 score over all

traces per scenario, ordered by increasing number of variants.

O
r
i
g
i
n
a
l

0
0
2
R
a
n
d
o
m

0
0
3
R
a
n
d
o
m

0
0
4
R
a
n
d
o
m

0
0
5
R
a
n
d
o
m

0
0
6
R
a
n
d
o
m

0
0
7
R
a
n
d
o
m

0
0
8
R
a
n
d
o
m

0
0
9
R
a
n
d
o
m

P
a
i
r
W
i
s
e

0
1
0
R
a
n
d
o
m

T
r
a
d
i
t
i
o
n
a
l

0
5
0
R
a
n
d
o
m

1
0
0
R
a
n
d
o
m

A
l
l

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scenario

A
v
e
r
a
g
e

Precision Recall F1 Score

Figure 4: Average Precision, Recall and F1 Score per Scenario

The best results were obtained with the largest scenarios which

achieved 100% average recall and around 99% average precision

and F1 score. Overall, the results of our feature location technique

improve the more variants are available. This is to be expected,

as our technique is based on the comparison (i.e. commonalities

and differences) of features and implementation of variants. As

a consequence of this, scenarios consisting of only one or two

variants produce quite useless results.

However, it is not generally true that more variants always pro-

duce better results. For example, the 9 random variants produce

a slightly worse result than the 8 random variants. Similarly, the

10 traditional variants produce a slightly better result than the

10 random variants. This means that variants with beneficial con-
figurations (i.e. combinations of features that exhibit interesting
variability) can make up for a lower number of total variants avail-

able. Also, there seems to be a critical point after which the results

do not improve much anymore, which is somewhere around 10 vari-

ants. After that, every additional variant only improves the results

marginally. Beyond 50 variants the results do not even change at all

anymore as nothing new can be learned from additional variants.

The few differences that remain in the results, even with all

variants available for analysis, are caused by ambiguities during the

alignment of sequences of lines of source code (for example, children

of methods in the artifact tree, see Figure 2) during the comparison

of the implementation of variants. Alignments of sequences of

lines, i.e. insertions and deletions, do not always reflect perfectly

the actual changes that were performed, as anyone who has ever

used a source code diffing tool, e.g. when performing merges in a

VCS such as Git, is probably aware. This causes misinterpretations

of changes and leads to mismatches with the ground truth in some

cases. However, this does not mean that the computed traces are

wrong as they still produce the exact same variants, it just means

that there are multiple valid traces and that the one our approach

computed does not match the one provided by the ground truth.

This is illustrated with a minimalistic example in Figure 5. It shows

three variants with features {A}, {A,B} and {B} respectively and

alignments of the statement i++ on the left and the corresponding

traces that produce the variants in the form of annotated code

on the right. The two rows illustrate two different alignments and

corresponding different traces. Even though the traces (on the right)

are different, the produced variants (on the left) are identical.

1 int i;

2 i++;

3 i++;

4 return i;

1 int i;

2 i++;

3 return i;

A,B B

#if A

i++;

#end

#if B

i++;

#end

#if A || B

i++;

#end

#if A && B

i++;

#end

1 int i;

2 i++;

3 return i;

A

1 int i;

2 i++;

3 i++;

4 return i;

1 int i;

2 i++;

3 return i;

A,B B

1 int i;

2 i++;

3 return i;

A

Traces

Traces

Figure 5: Illustration of two valid alignments of lines (top
and bottom) in three variants with two optional features A
and B (left side) and the corresponding traces (right side).

6 CONCLUSION
This work presents a solution to the ArgoUML-SPL feature location

challenge posed at SPLC [14]. We applied ECCO, an automatic fea-

ture location technique, that is based on the comparison of features

and implementation of a set of variants. Our technique computes a

set of traces that map features (actually propositional logic formulas

with features as literals) to code elements. Overall, the more vari-

ants are available the better our computed traces match the ground

truth traces provided by the challenge. However, a critical point is

reached somewhere around 10 variants where precision and recall

reach around 90% and after that they only improve marginally with

every additional variant. The highest gain per additional variant is

achieved with the first few variants. The runtime of our technique

increases linearly with the number of variants.
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